skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dev, Vidhya M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Barocaloric effectsthermal changes in a material induced by applied hydrostatic pressureoffer promise for creating solid-state refrigerants as alternatives to conventional volatile refrigerants. To enable efficient and scalable barocaloric cooling, materials that undergo high-entropy, reversible phase transitions in the solid state in response to a small change in pressure are needed. Here, we report that pressure-induced spin-crossover (SCO) transitions in the molecular iron(II) complex Fe[HB(tz)3]2 (HB(tz)3− = bis[hydrotris(1,2,4-triazol-1-yl)borate]) drive giant and reversible barocaloric effects at easily accessible pressures. Specifically, high-pressure calorimetry and powder X-ray diffraction studies reveal that pressure shifts as low as 10 bar reversibly induce nonzero isothermal entropy changes, and a pressure shift of 150 bar reversibly induces a large isothermal entropy change (>90 J kg−1 K−1) and adiabatic temperature change (>2 K). Moreover, we demonstrate that the thermodynamics of the SCO transition can be fine-tuned through systematic deuteration of the tris(triazolyl)borate ligand. These results provide new insights into pressure-induced SCO transitions and further establish SCO materials as promising barocaloric materials. 
    more » « less